
Fabien Penso

How I built a high-performance 
Cosmos indexer

@fabienpenso

DEVMOS 2024

https://pen.so



C
on

st
el

la
tio

ns
01
Time Spent writing 
indexers

2 years full-time, 
3500h

02
Project size 77,000 lines of Rust

03
Performance Indexing time from 

genesis:

Kujira in 1h, Osmosis 
in 6h, Stargaze in 3h



C
on

st
el

la
tio

ns
04
Usage Stargaze: > 15M 

requests per day

05
Indexed chains Stargaze, Osmosis, 

Neutron, Noble, 
dYdX, Kujira, …

06
Infrastructure Stargaze: 4 

redundant servers

Kujira, Osmosis, 
Neutron, Noble, 
dYdX: 1 single server



Constellations indexer [...] 
singlehandedly sped up development 
[...] threefold. @josefleventon

Thank you @fabienpenso for 
Constellations♥ @IBCMuffins

... and many using the public API

Fe
ed

ba
ck

https://twitter.com/josefleventon_/status/1661153691888664576
https://twitter.com/IBCMuffins/status/1668509142372298753


Stargaze: Benefits from no indexer to 
using an indexer?

• Front-end fetch lots of data directly from the chain

• Some pages took > 30 seconds. Stargaze launchpad failed when too much content 
was loaded. Not sustainable.

No Indexer

With Indexer

Page loaded < 500ms



Every chain should 
have an indexer

Users expect web3 products with web2 
performance



Indexer

Frontend

Blockchain launch
Smart Contracts

Infrastructure

A lot of blockchain launches are all and only about 
smart contracts, but that's a tiny 10% of the whole 

shebang. The remaining 90% comes from the 
frontend, the backend, and the infrastructure.

The significance of these components is often 
overlooked, yet they're crucial for developing a 

high-quality product. It requires approximately two 
years to reach the level of Stargaze, accounting for all 

these elements.



Prepare for 
Chaos

How to build an indexer?



✓ Memory safety (multi-thread)

✓ Most loved language 8 years 
in a row (Stack Overflow)

✓ Performance

✓ Functional programming

But that's not enough, lots of time 
spent tweaking performance, 
making things faster, adding 
caching layers and 
instrumentation

La
ng

ua
ge

Rust



Make it work
Make it robust

Make it fast



Naive way to write indexers

1 2 3

Fetch

Fetch all blocks and block 
results from RPC nodes

Store all blocks, 
transactions, messages, 

events into SQL

Go through messages and 
events, apply state 

changes

Store Parse



Configuration
Fe

tc
hi

ng
 b

lo
ck

s

Using RPC nodes from Rhino (https://rhinostake.com/), Notional 
(github.com/notional-labs) or provided by the chain. Managing nodes can be a 
full-time work… Waiting for weeks for an archive node from a chain.

https://rhinostake.com/
https://github.com/notional-labs


Async with Tokio 
Fe

tc
hi

ng
 b

lo
ck

s



Multi-thread with Rayon
Fe

tc
hi

ng
 b

lo
ck

s



Encountered issues
Fe

tc
hi

ng
 b

lo
ck

s
✓ Very slow archive nodes
✓ 502 timeouts, 429 rate limiting, nodes 

down for hours
✓ Secp256k1 public keys with invalid SEC1 

tags are accepted (cosmos-sdk issue 
#20406) by the go SDK, refused by 
CosmRS

✓ Invalid `txs_results` returned for legacy 
ABCI responses (CometBFT issue 
#3002), preventing fetching some 
dYdX/Sei block results

✓ Blank validator keys

✓ Some Osmosis block results 
can be > 280MB, and node is 
failing



You're dealing with on-chain and off-chain 
data, you can't trust any of it. Malformed 
user submitted UTF8 strings, renamed 
smart contracts events, null bytes breaking 
Postgres, wrong smart contract address, 
invalid base64. It's the wild west.

Must build for errors and resilience.



St
or

in
g 

bl
oc

ks
Test Driven Development

Known input: blocks, 
transactions, messages, 

events

Known expected output: 
SQL rows

Indexers are the perfect use-case for TDD



St
or

in
g 

bl
oc

ks
Test Driven Development



Protobuf files
St

or
in

g 
bl

oc
ks

Cosmos-sdk chains are using protobuf for on-chain messages. But 
parsing historical messages isn't as easy as you'd think.

I had to dig in full git history to retrieve deleted protobuf files and 
fields, and merge all needed within my private repository.



Protobuf files
St

or
in

g 
bl

oc
ks

✓ Missing/removed fields
✓ Missing files
✓ Linked to a buf.build project in 

buf.yaml, but not pushed and not 
available



Protobuf files
St

or
in

g 
bl

oc
ks

Do's Don'ts
● Copy and save proto files 

into your repository
● Write your own protos to 

Rust structs into a specific 
crate (using prost, 
prost-build)

● Might need to search older 
deleted fields from proto 
files

● Don't link to existing repo 
via git submodule

● Don't rely on buf.build, or 
only to copy current 
existing files

● Don't think using existing 
proto files is fine, fields get 
deleted and replaced with 
reserved *later*



Storing in SQL
St

or
in

g 
bl

oc
ks



Decoding IBC packets
St

or
in

g 
bl

oc
ks



Processing stored txs
Pa

rs
in

g 
bl

oc
ks ● Create NFT models (collections, nfts) and 

apply historical messages (owners, sales, …)
● Create IBC related models (clients, 

connections, channels, denoms)
● Create Stargaze Names models
● Set invalid events, invalidated by later new 

events (bid invalidated by a sale)
● Create validator related models
● Fetch off-chain data



In
st

ru
m

en
ta

tio
n

tracing + opentelemetry



In
st

ru
m

en
ta

tio
n

Jaeger dashboard



Sentry dashboard
In

st
ru

m
en

ta
tio

n



Indexing speed
Look at parsing performance based on data throughput, not block 
count. I had different speed for different chains and found out I 
had the same data throughput.

Be
nc

hm
ar

ki
ng



CPU Usage while 
indexing

Pe
rf

or
m

an
ce



198 errors on 7M 
requests

Er
ro

r r
at

e



Metabase
BI

 T
oo

ls



An excellent score falls in 1.00-0.94, a good 
score ranks from 0.93-0.85, a fair score hits 
0.84-0.70 and a poor one between 0.69 and 
0.49. Any lower number is unacceptable.

Source: TechTarget

The p75 threshold is the value at which 25% 
of transaction durations are greater than the 

threshold



Thank you
For further discussions, reach out to 
@fabienpenso or devmos@pen.so

 ✨Stargaze: DEVMOS 2024 After-Party✨
https://lu.ma/Stargaze_DEVMOS-2024

https://lu.ma/Stargaze_DEVMOS-2024

